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ABSTRACT OF OBJECTIVES AND ACCOMPLISHMENTS: 

It has been our objective and that of several other groups to use Slater-type 

orbitals, STOs, characterized by exp(-R) in problems of ab initio quantum chemistry 

rather than the currently used Gaussian-type orbitals, GTOs, characterized by exp(-R2). 

We believe that STOs will give more accurate results because they can fulfill a cusp 

condition and have correct asymptotic behavior. This was proven by us in the case of 

H£. But the real test would be for molecules with two or more atoms and electrons. 

The general molecular problem requires at most four-center molecular integrals. 

In just the last year we have devised an accuracy and fast method for processing STO 

molecular integrals: interior regions are done by Gauss-Legendre integration after a- 

function expansions, and exterior regions analytically with the aid of look-up tables for 

the evaluation of basic integrals. C, E, and F matrices that facilitate the calculations are 



stored in memory.   All our procedures have been checked by the computer algebra 

program Mathematica, which can overcome all cancellation errors. 

The fact that several groups have worked many years on the STO integral 

problem without achieving the goal of a complete integral package, reveals the inherent 

difficulty of translating analytic formulation into computer programs. The most 

difficult part, namely, radial integrals, has now been solved with the support of the 

AFOSR. Now, it remains to use this strategy to assemble a complete STO integral 

package. 

INTRODUCTION 

The problem of multicenter molecular integrals over Slater-type orbitals (STOs) is 

a long-standing one that has been pursued in a systematic manner since the time of 

Kotani, Lowdin, Colson, Bartnett, Roothaan, and Ruedenberg immediately after World 

War II. Silverstone, Harris, Michels, Shavitts, and Steinborn continued work on the 

problem through the sixties and seventies. Here, at Florida A&M University, we caused 

renewed interest in the problem by holding an international meeting involving 35 of the 

most knowledgeable scientists on Slater orbitals (exponential-type orbitals) in the 

summer of 1981. 

Today, several groups are making efforts to bring this problem to a close: 

Steinborn (Germany), Rico (Spain), Guseinov (Russia), Bouferguene (France), Talman 

(Canada), and Tai (USA). In spite of the massive effort, a general "black box" integral 

subroutine has not been developed. I do believe that we at Florida A&M University 

have finally penetrated the mystery of this "intractable" problem. With the help of the 

computer algebra program Mathematica we can increase the precision of a number 

(using up to 100 or more digits) and overcome cancellation errors. The knowledge of 

the true value of an integral gives us insight to program in FORTRAN to achieve 

acceptable accuracy at high speed. Our secret is that every orbital is associated with C, 

E, and F matrices that are to be stored in computer memory. Also, speed is achieved by 
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the extensive use of look-up tables.  To eliminate time-consuming multiplications, a 

Gauss-Legendre numerical quadrature is done for interior regions. This strategy should 

be transparent after reading the attached paper, "Comprehensive Strategy for the 

Calculation of Overlap Integrals with Slater-Type Orbitals." Now that all of the hard 

thinking has been done, it is just a matter of time before an integral package can be 

assembled. 

REVIEW OF PROGRESS: 

1992.   Our study of STOs began in 1978'(Steinborn started in 1968).  It is remarkable 

that so much of our early work played a significant role in our final formulation of this 

problem. In retrospect, it appears that this long gestation period was necessary. 

During 1992 we wrote a paper on semianalytical methods for four-center 

molecular integrals. This paper is in the spirit of our final method. The potentials were 

calculated analytically and the second integral was done numerically by Simpson's rule. 

Now we do the interior integration by Gauss-Legendre quadrature, and the exterior 

regions is done entirely analytically. For large values of parameters, we introduced the 

T and X matrices to save computer time. For small values of parameters we use 

expansions in E and F matrices. In this paper only Is orbitals were used and jmax was 

set to 36. Now, we have precalculated jmax values for many different orbitals. 

At the meeting, "Current Trends in Computational Chemistry," Jackson, 

Mississippi, we presented an important paper, "Benchmarks for Two-Center Exchange 

Integrals." In it and in an earlier paper on "The Lowdin oc-function and Overlap 

Integrals" we worked with the computer algebra program Mathematica. We showed 

how to easily generate exact values for the C, E, and F matrices. (This had previously 

been done in FORTRAN, but with great difficulty). This permitted the exact 

determination for overlap integrals for the first time. The advantage of Mathematica is 

that we can work at any degree of precision and thereby always overcome cancellation 

errors. As a matter of interest, it appears that for realistic problems only 100 digits are 
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needed at most. But our concern is with accuracy and speed. This requires that we use 

FORTRAN. However, it is always comforting and helpful in programming to work 

toward the true answer. The exchange integral is given by an infinite sum of term, 

1 = ^1,.  Twelve terms usually give accuracies to eight digits.  Mathematica gives the 

exact value for each Ir It may be that at a later date we have to use convergence 

accelerators as developed by Weniger or Bouferguene. 

We used a LCAO approach with only s-orbitals to find the ground state of Hj. 

As expected, STOs proved to be more accurate than GTOs. Again, this was the case if a 

basis of STOs with various angular momenta were used.   Once more, this was 

confirmed for HeH2+- 

1993. The one-electron three-center integral is difficult to converge if it is evaluated at 

the apex of an equilateral triangle. With our new Power Macintosh we felt we had a 

good chance to generate a closed formula for this integral. After a heroic effort we had 

to abandon this hope. This cleared the atmosphere, and henceforth we were free to 

employ numerical methods. 

The invited paper, "Developments in Multicenter Molecular Integrals," was 

presented in Spain. Gauss-Legendre numerical integration was selected for the interior 

region and a Gauss-Laguerre quadrature for the exterior region. 

1994. Once more an attempt was made to obtain closed formulas, but to no avail. The 

Gauss-Laguerre integration proved to be impractical ~ too many quadrature points 

were needed for orbitals with high quantum numbers. 

1995. All possibilities having been tried, the final formulation appeared obvious and 

inevitable. Now, it was just a matter of doing it first in Mathematica and then in 

FORTRAN. The spirit of the method is presented in the appended preprint, 

"Comprehensive Strategy for the Calculation of Overlap Integrals with Slater-Type 

Orbitals." Also included is a Mathematica version of a program for a three-center 

exchange integral. 
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CONCLUSION: 

We claim to have solved the real difficulty of performing multicenter molecular 

integrals over Slater-type orbitals by developing an accurate and fast method for the 

radial integrals. The necessary angular integrals are analytic and well-known. To 

complete the job of obtaining a "black box" integral package with needed extensive de- 

bugging, it would be desirable to work with another group that is committed to Slater- 

type orbitals. After all, many persons collaborated on Guassian-type integrals. 



Comprehensive strategy for the calculation of 

overlap integrals with Slater-type orbitals 

Herbert W. Jones 
Department of Physics 

Florida A & M University 
Tallahassee, Florida 32307 

Abstract 

A strategy is presented for the calculation of two-center overlap 

integrals over Slater-type orbitals. Displaced orbitals are expanded in 

spherical harmonics with Löwdin a-functions as coefficients. The 

exponentials in the a-functions are expanded leading to representation in 

terms of stored E and F matrices. For a given precision, the number of 

terms needed for each orbital for a specified harmonic, and its displacement 

multiplied by its screening constant, is pre-determined and stored. A survey 

of this data is presented. The one-dimensional integration needed for the 

overlap is done by Gauss-Legendre numerical integration over the interior 

region, and analytically over the exterior. Complete stability is achieved and 

excellent results obtained. Implications for all multicenter molecular 

integrals are apparent. 



I. INTRODUCTION 

Slater-type orbitals (STOs), i.e., exponential type orbitals, would be 

desirable for basis sets in quantum chemistry and molecular physics because 

they can satisfy the cusp condition at nuclei and represent long range 

electronic behavior [1]. However, the notorious computational difficulties of 

STOs have led to their virtual replacement by Gaussian-type orbitals in basis 

sets. Nevertheless, significant progress is being made in several quarters on 

this long-standing problem of computing with STOs [2]. 

Two-center overlap integrals over STOs are needed in semiempirical 

and ab initio quantum chemical calculations. There is a long history, 

starting with Kotani [3], Mulliken [3], and Roothaan [3], of systematic 

attempts to obtain accurate and fast evaluations of these simplest of 

multicenter molecular integrals. They were not entirely successful. Even the 

most recent computer codes [4, 5] must contend with restrictions on 

parameter values. 

Overlap integrals are also used to introduce new strategies for general 

multicenter molecular integrals. Here, we consider both uses of the overlap 

problem. 

One might say that all mathematical methods for solving multicenter 

integrals are correct; it is the finite word length of computers that is at the 

root of the problem of implementation. Cancellation errors, i.e., the 

subtraction of nearly equal numbers, are endemic to computations with 
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STOs. These invidious cancellation or differencing errors often make results 

, unusable. The problem of the speed of computation must also be confronted 

if STOs are to be competitive with GTOs. This consideration has caused us 

to recommend the use of a one-dimensional Gauss-Legendre numerical 

quadrature for the interior region of space, i.e., between the origin and the 

outermost orbital center. 

We have had considerable success in using the Lowdin a-function 

method for a limited class of STOs [6], We must now present new details so 

that this method can be efficiently used with any STO. The twin goals of 

high speed and high accuracy have been achieved here with overlap integrals 

with implications for all multicenter integrals. 

II. THE a-FUNCTION EXPANSION 

A STO % = ARN-le-'*Yt1(e,<b) in its local coordinate system (R, 0, <|>) 

has its origin displaced to (0, 0, a) in the working coordinate system (r, 6, $). 

Its expansion in spherical harmonics is [7]: 

X •AM 
(2L + 1XL + M)!' 

4n(L-M)\ 

y2 

c '(-irs 4TC(1 + M)! 

^1(21+ 1X1-M)\ 

1/2 

(1) 

where 



and 

ar ^ fy)={lt^-^-ffcr^ & 
i=0 ;=0 

//, 

//,.(c«y™(w 

'^[(-ly'^-c-^], r<a 

^[(-ly'c^-g-^], r>a 

(2) 

(3) 

NA 
The normalization constant   A - {lQ *2[(2N)!] 2 and mop = N + L + £-M, 

and  j'stop = N + £. Suzuki [8] has shown that -M may be included in istop. 

It is necessary when using the computer algebra program Mathematica [9].) 

As pointed out by Bouferguene and Rinaldi [10], the elements of the C- 

matrix  Ct     (i, j) grow explosively with higher harmonics  I, which usually 

necessitates using computer algebra with arbitrary accuracy to avoid 

intolerable cancellation errors. Expansion of the exponentials in the a- 

function leads to the ^-matrix for r < a and the F-matrix for r >a [6, 11]. 

The elements of these matrices are small and not intimidating. Thus, 

ccfM = < 

j max istop 

i=t 1=0 

jstop imax 

;'=0 i=0 

(4) 

(5) 



As a general rule, computation is faster if a double sum is reduced to a 

single sum. Therefore, for the sake of simplicity, too, we introduce single 

dimensional matrices  Yt (J)  and  Zt (j). 

ar&,cr)= 

./max 

X^C/MW, >•<* 
;«< 

i stop 

7=0 

with 

i stop 

YiO^e^lErQjXW i-L-l-l 

j=0 

and 

z<0>X^0-.0-(W 
1=0 

(6) 

(7) 

(8) 

(9) 

These definitions are slightly different from the previous ones because 

we want to emphasize that a and r always are associated with £. Now, the 

issue is how many terms in the expansions of the exponentials are to be 

taken, i.e., the values of jmax and imax. In previous work with Is orbitals 

we simply used jmax = imax = 36. 



To cover all possible values of r in the r < a case we determine the 

value of jmax to produce an error less than one part in 1016 of the exact 

value when r = a. The exact value was determined by using Mathematica 

set to 70 digit accuracy using a C-matrix closed formula, for the a-function. 

Fortunately, the values of  Yt (j)   and also the terms that add up to   Z( (j) 

decrease monotonically after a few terms, so there is no ambiguity in the 

results.   But for some STOs with very large quantum numbers there is a 

slight loss in accuracy to one part in 1012. This could easily be overcome by 

using double precision, if need be. 

In Table I we take orbitals up to N = 5, L = 4, M = 4, £ = 12, and 

(J^a) = 16.   We note that the first non-zero value of   Y((j)   starts at   j = £ 

and increases in steps of two; imax is always equal to or less than jmax; 

jmax and imax increase with   (tfl)   and  £. The different values are only 

mildly different from each other. Therefore, interpolation is hardly 

necessary; we may err on the side of caution without much of a change in 

imax or jmax and produce only a small increase in computer time. For 

simplicity, we could even just take imax = jmax. These values of jmax and 

imax are to be stored as part of the data associated with an orbital as well as 

its JS-matrix and .F-matrix. 



III. OVERLAP INTEGRALS 

The overlap integral between two orbitals %'  and % is given by 

S = \x'%dv (10) 

The orbital   %'   is placed at the origin and  %  is placed along the z-axis at 

(0,0, a). Then, 

%' = A'rw'-1^vy*,'(e,(|)) 

X = ARN-le-*YL
M(Q,q>). 

and 

Expanding % about the origin in a-functions and performing the 

angular integration, the orthogonality of spherical harmonics dictates that 

only one term with  t = V and  M = M' survives [12]. Thus 

S = K]drrN'+1e^'ra^M^a,i;r) (11) 

with 

K _(-l) 
M 

■N-l 

(2CT    (2Q      (2L +1)     (L + M)!    (Z/ + M)\ 

(27V')!     (2JV)!    (2Z/ + 1)    (L-M)!     (L'-M)\ 

1/2 

(12) 



The integral breaks down into two parts. The first part SI is the 

integration from 0 to a. With an eye to future developments, we decide to 

use a 24-point gauss-Legendre quadrature over this interior region. We have 

found that the a-functions are relatively smooth and therefore numerical 

integrations over them is very successful. The a-function is accurately 

evaluated using the Y( matrix with one of the jmax values. If we tried an 

analytical approach using the C-matrix, we would be confronted with terms 

of the form     exp[-(£'-£)r].     Such terms,  as  many investigators  have 

discovered, are a source of instability. When one examines exchange 

integrals using expanded a-functions, the product of two infinite series must 

be considered. This problem can be avoided by resorting to a numerical 

quadrature. 

The second part of the integration S2 is from a to infinity. Here 

analytic methods may safely be employed as all exponential terms are of the 

form exp[-(£' + Qr]. Thus: 

N+l 

S2 = K^Z((j)jdre-^)rr^-1 (13) 
j=o 

Each integration term can readily be turned into a sum by the formula 



\dr e-
wrn=e-^yj    

nl     a" , (14) 
1 Ü{n-k)\wM U4J 

The Zt (/) matrix is determined by using the Table I value for imax 

corresponding to the appropriate orbital, harmonic, and  (C,a) value. 

IV. RESULTS 

The strategy described here for the evaluation of overlap integrals 

proved to be very efficient and accurate. All overlaps attempted are accurate 

to at least 10"    parts, as confirmed by our computer algebra program. 

Table II shows our results in calculating overlap integrals done by 

several authors [13]. The second line of each calculation is the exact result 

as determined by computer algebra [13b]. The various authors provide from 

6 decimal digits to 16. Our results are impressive. We achieve machine 

accuracy of 16 decimal digits for (7441744) with p = 2, t = 1/2 (£' = 3, C, = l), 

without the cumbersome use of formulas [13d]. All the other of our wide- 

ranging overlaps give 14 or 15 decimal digits, except the last case with the 

highest quantum numbers (10, 0, 0110, 9, 0) [13e]: that gives 11 decimal 

digits. Since table I did not include all of the jmax and imax values needed, 

some were calculated individually. Eventually, all physically acceptable 

orbitals will have jmax and imax values as data. 



V. CONCLUSION 

Our new procedure for overlap integrals is so straight forward and 

stable that we can expect to approach machine accuracy on all but unusual 

cases. Even here, limited use of double precision can provide 16 decimal 

digits for all physical orbitals. 

The implications for all multicenter molecular integrals are clear: 

Gauss-Legendre quadrature for interior regions should be used after the a- 

functions are expanded and evaluated on a fixed grid. The exterior regions 

that will only have negative exponentials may safely be handled analytically. 

An ab initio calculation on a molecule would require the reading in of 

E- and i^-matrices for each orbital of a basis set (together with their jmax 

and imax values). Then, Ye(j) and Z((j) would be calculated over a 

standard grid. Now, we would be ready to calculate all multicenter 

molecular integrals needed. This comprehensive approach should advance 

the use of STOs in molecular problems. 
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r 
• 

Orbital Ca I jmax imax 
NLM 1 2 22 22 
5 4 2 6 

12 
30 
36 

25 
30 

4 2 
6 
12 

36 
40 
46 

32 
35 
40 

-   .. 16 2 
6 

70 
70 

60 
63 

' 12 72 64 V 

5 4 3 1 3 25 21 
6 28 24 
12 36 30 

4 3 
6 
12 

35 
40 
44 

31 
34 
38 

16 3 67 59 
6 70 61 
12 72 64 

5 4 4 1 4 24 22 
6 28 24 
12 34 30 

4 4 
6 
12 

34 
36 
44 

32 
34 
40 

16 4 
6 
12 

68 
68 
70 

60 
60 
66 

Table I. The values ofjmax and ima* needed for 16 decimal digit accuracy of 
orbital   NLM corresponding to tfl   (screening constant times displacement 
distance) and harmonic  £. 
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threeC 

(*     July  6,1995 ENERGY  OF  REGION  1,2,3,4,5   ;   SUM  Ü2345 *) 
(*       three center exchange     *) 
(*  see H.W.Jones,   J.Comp.Chem.12,1217(1991)     *) 

nn=l;hh=0;mm=0;z=1.2;a=2;jmax=36;w=2*z;   zeta=2*z; 
gl[n_,a_]:=Which[n>=0,aA(n+1)/(n+1),n<-l,aA(n+1)/(n+1),True,Log[a]]; 
fl[n_,a_,b_]:=Which[n>=0,(-Exp[-b*a]/bA(n+1)*Sum[n!/(n-t)!*(a*b)A 

(n-t),{t,0,n}]+n!/bA(n+l)), 
n<-l, 
((-b)A(-n-1)*Sum[(-Exp[-b*a]*(-n-t-1)!/(-n-l)! 
/(-b*a)A(-n-t) + (-n-t-1) ! / (-n-1) ! / (-n-t) !), 
{t,1,-n-1}])+(-b)A(-n-1)/(-n-1)!*(ExpIntegralEi[-b*a] 
-Log[Abs[b]]-EulerGamma), 
True,ExpIntegralEi[-b*a]-Log[Abs[b]]-EulerGanuna]; 

f2[n_,a_,b_]:=Which[n>=0,Exp[-a*b]/bA(n+1)*Sum[n!/(n-t)!*(b*a)A(n-t), 
{t,0,n}], 
n<-l, 
-(-b)A(-n-1)*Sum[-Exp[-b*a]*(-n-t-1)!/(-n-l)!/ 
(-b*a)A(-n-t),{t,1,-n-1}] 
-(-b)A(-n-1)/(-n-1)!*ExpIntegralEi[-b*a], 
True,-ExpIntegralEi[-b*a]]; 

flgam[n_,r_,z_]:= l/zA(n+1)*Gamma[n+l,0,z*r]//N; 
flgaml[n_,w_]:=flgam[n,l,w]; 

(*  activate points and weights  *) 
b=Sqrt[2.]; d=2. ; 
npoint=8; 
blim=d; alim=.001; 
bma= (blim-alim)/2; 
apb=(alim+blim)II; 

hmax=12; 
mstop=nn+30+hmax+l; 
rm=Table[-bma*zz[[i]]+apb,{i,l,npoint}]; 
rp=Table[bma*zz[[i]]+apb,{i,l,npoint}]; 
vmflgaml=Table[0,{m,l,mstop},{i,l,npoint}]; 
vpflgaml=Table[0,{m,l,mstop},{i,l,npoint}]; 
Do[ vmflgaml[[m,i]]=flgaml[m,z*rm[[i]]]; 

vpflgaml[[m,i]]=flgaml[m,z*rp[[i]]], 
{m,l,mstop},{i,l,npoint}]; 

alfa[r_J :=Sum[y[[q+1]]*rAq,{q,h,30,2}] 
ul[r_]:=rA(nn+l)*Sum[y[[j+1]]*rAj*flgaml[nn+j+h+1,z*r],{j,h,30,2}]; 

bias=2*hmax-nn+l+l; 
stop=bias+4nn-l; 
vf2b=Table[0,{i,l,stop}]; 
Do[vf2b[[i]]=f2[i-bias,a,w+zeta],{i,1,stop}]; 
abias=-nn+2*hmax+l+l; 
astop=abias+2nn-1; 
vf2a=Table[0,{t,l,astop}]; 
Do[ vf2a[[t]]=f2[t-abias,a,zeta],{t,l,astop}]; 
vf2a=vf2a//N; 
vf2b=vf2b//N; 

aa=Sqrt[(2*z)A(2nn+l)/(2nn)i] 



threeC 

Timing[exchange=0.0; 
Do[ 
yb=Table[zAj*Exp[-z*b]*Sum[ematrix[[h+l,i+l,j+l]]*(z*b)A(i-hh-h-1), 

{i,0,nn+hh+h-mm}],{j,0,jmax}]//N; 
yd=Table[zAj*Exp[-z*d]*Sum[ematrix[[h+l,i+l,j+1]]*(z*d)A(i-hh-h-1), 
{i,0,nn+hh+h-mm}],{j,0,jmax}]//N; 
zb=Table[zA(j-h-1)*Sum[ematrix[[h+1,j+1,i+1]]*(z*b)Ai, 

{i,h,jmax}],{j,0,nn+h}]//N; 
zd=Table[zA(j-h-1)*Sum[ematrix[[h+1,j+1,i+1]]*(z*d)Ai, 

{i,h,jmax}],{j,0,nn+h}]//N; 
q2=Sum[yb[ [j+1] ] *f lgam[nn+l+j+h,b, z] , { j ,h, jmax, 2} ] //N; 
C3R=Table[0,{m,0,2nn+h}]; 
Do[C3R[[nn+j-k+l]]=C3R[[nn+j-k+1]]+zb[[j+1]]*(nn+j)!/(nn+j-k)!/wA(k+l), 

{j,0,nn+h},{k,0,nn+j}]; 
q3A=Exp[-w*b]*Sum[C3R[[m+1]]*bAm,{m,0,2im+h}]//N  ; 
il=0.0; 

Do[        r=rm[[i]]; 
If[r   <=  b,volt=rA(nn+1)*Sum[yb[[j+1]]*rAj*flgaml[nn+l+j+h,z*r],{j,h,jmax,2}], 
volt=q2/rA(h+1)+q3A/rA(h+1)-Exp[-w*r]/rA(h+1)*Sum[C3R[[m+1]]*rAm,{m,0,2nn+h}]]; 
If[r  <=  d,aval=Sum[yd[[q+1]]*rAq,{q,h,jmax}] , 

aval=Exp[-z*r]*Sum[zd[[q+1]]*rA(q-h-1),{q,0,nn+h}]]; 
il=il+bma*ww[[i]]*rA(nn+1)*Exp[-z*r]*aval*volt; 

r=rp[[i]]; 
If[r  <= b,volt=rA(nn+1)*Sum[yb[[j+1]]*rAj*flgaml[nn+l+j+h,z*r],{j,h,jmax,2}], 
volt=q2/rA(h+1)+q3A/rA(h+1)-Exp[-w*r]/rA(h+1)*Sum[C3R[[m+1]]*rAm, {m,0,2nn+h}]]; 
If[r   <=  d,aval=Sum[yd[[q+1]]*rAq,{q,h,jmax}], 

aval=Exp[-z*r]*Sum[zd[[q+1]]*rA(q-h-1),{q,0,nn+h}]]; 
il=il+bma*ww[[i]]*rA(nn+1)*Exp[-z*r]*aval*volt; 

,    {i,l,npoint}]; 

(* analytic     outside *) 
w=2.*z; 
i2=q2*Sum[zd[[j+1]]*f2[nn-l-2h+j,d,w],{j,0,nn+h}]//N; 

ZC3R=Table[0,{t,0,3nn+2h}]; 
Do[      t=m+j; 

ZC3R[[t+1]]=ZC3R[[t+1]]+zd[[j+1]]*C3R[[m+1]], 
{j,0,nn+h},{m,0,2nn+h}]; 

i3R=-Sum[ZC3R[[t+l]]*f2[nn-l-2h+t,d,4.*z],{t,0,3nn+2h}]//N; 
i3A=q3A*Sum[zd[[j+1]]*f2[nn-2h-l+j,d,2.*z],{j,0,nn+h}]//N; 
i3=i3R+i3A; 
il23=aaA4/(2h+l)A2*(il+i2+i3)*LegendreP[h,1./Sqrt[2.]]; 
Print[h,"        ",il,"        ",i2,"        ",i3," ",il23]; 
exchange=exchange+il23 

,{h,0,12}];   Print[exchange]      ] 

N[exchange,16] 

0.1099365385879246 


